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Abstract. Average-link (AL) is a distance based hierarchical clustering method,
which is not sensitive to the noisy patterns. However, like all hierarchical cluster-
ing methods AL also needs to scan the dataset many times. AL has time and space
complexity ofO(n2), wheren is the size of the dataset. These prohibit the use
of AL for large datasets. In this paper, we have proposed a distance based hierar-
chical clustering method termedl-AL which speeds up the classical AL method
in any metric (vector or non-vector) space. In this scheme, first leaders clustering
method is applied to the dataset to derive a set of leaders andsubsequently AL
clustering is applied to the leaders. To speed-up the leaders clustering method,
reduction in distance computations is also proposed in thispaper. Experimental
results confirm that thel-AL method is considerably faster than the classical AL
method yet keeping clustering results at par with the classical AL method.
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1 Introduction

Clustering technique is required in numerous fields of engineering namely Data Mining,
Pattern Recognition, Statistical Data Analysis, Bio-informatics, etc. [1–3]. Given a set
of data points (called patters), clustering involves grouping these patterns into different
disjoint subsets termed as clusters based on some similarity measures. In other words,
patterns in a cluster are more similar to each other than patterns in other clusters.

The clustering methods are mainly divided into two categoriesviz., partitional clus-
tering and hierarchical clustering, based on the way they produce the results. Partitional
clustering methods create a single clustering (flat clustering) of the dataset. Partitional
clustering can be classified into two classes based on the criteria usedviz., distance
based and density based. Distance based methods optimize a global criteria based on
the distance between the patterns.k-means, CLARA, CLARANS are examples of dis-
tance based clustering method. Density based methods optimize local criteria based
on density information of the patterns. DBSCAN [4], DenClueare some well known
density based clustering methods.

Hierarchical clustering methods create a sequence of nested clusterings of the dataset.
Like partitional clustering, hierarchical clustering methods can also be classified in two
classesviz., density based (e.g., OPTICS [5], Chameleon) and distance based (e.g.,
single-link (SL) [6], complete-link (CL) [7], average-link (AL) [8]).



The above three distance based hierarchical clustering methods namely SL, CL and
AL differ in the “distance measure” between a pair of clusters. In SL (CL), distance
between a pair of clustersC1 andC2 (say), is the distance between two closest (farthest)
patterns one fromC1 and the other fromC2. In other words, only a pair of patterns
decides the distance and it is independent of number of patterns present in the clusters.
Therefore, SL and CL clustering methods are sensitive to outliers or noisy patterns. To
minimize the effect of noisy patterns, inter-cluster distance in AL technique is computed
using all patterns present in both clusters. Distance betweenC1 andC2 in AL method is
the average of distances between all pairs of patterns, one taken fromC1 and the other
from C2. It builds a dendogram where each level represents a clustering of the dataset.
A suitable clustering is chosen from the dendogram based on the requirement. Selection
of a clustering from the dendogram can be done by specifying(i) the minimum distance
between any pair of clusters(ii) number of desired clusters.

For some applications like network intrusion detection system (NIDS) proportion
of the data points is unequal (i.e., number of the data pointsof abnormal/attack type
is very less compared to normal data points). These low proportional data points (ab-
normal/attack data points) look like outliers in the feature space. These abnormal data
points are likely to get merged with the clusters of normal data points in SL and CL
methods as they are sensitive to the noisy (outlier) points.However, AL method works
well even in the presence of noisy (outlier) data points. So,AL clustering method is
more suitable for these type of applications.

AL needs to scan the dataset many times and has time and space complexity of
O(n2). These prohibit the use of AL for large datasets. In this paper, we have pro-
posed a distance based hierarchical clustering method termedl-AL which speeds up the
classical AL method.l-AL method is suitable for any metric space.

In the proposed scheme, we have used leaders clustering method to derive a set of
leaders of the dataset. Later, AL is used to cluster the leaders. The final clusterings are
obtained by just replacing the leaders by their corresponding followers.l-AL has lower
time complexity because AL is used only on the leaders which are much smaller in
number compared to the dataset. It may be noted that leader generation involves single
scan of the dataset. Expansion of the clusters involves a constant complexity. Further,
technique has been proposed to reduce the number of distancecomputations in leaders
clustering method.

The contributions of this paper are:

– Technique has been proposed to reduce the number of distancecalculations re-
quired in leaders clustering. Triangle inequality property of metric space has been
used for this reduction.

– A distance based hierarchical clustering method termedl-AL is proposed which
speeds up the classical AL method and scans the dataset once.l-AL uses the accel-
erated leader clustering technique to generate the leaders.

– l-AL does not use any vector space properties1. It utilizes only the distance infor-
mation between the data points. Therefore,l-AL method is suitable for vector as
well as non-vector metric space.

1 vector addition and scalar multiplication



– Experimental results illustratel-AL method to be faster than classical AL method
yet maintaining clustering results at par with classical ALfor various cut-off dis-
tances.

The rest of the paper is organized as follows. Section 2 describes a summary of related
works. Section 3 describes the brief background of the proposed clustering method. Sec-
tion 4 describes the proposed leader-average-link (l-AL) method and also a relationship
between the AL method and thel-AL method is formally reported. Experimental results
and conclusion are discussed in Section 5 and Section 6, respectively.

2 Related work

In this section, a brief review of related works is reported for distance based hierarchical
clustering methods.

T. Zhang et al. in [9] introduced a clustering method called BIRCH for large
datasets. The core concept of BIRCH isClustering Feature (CF). The CF utilizes
the vector space (Euclidean space) properties to store the summary ofk data points

{
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2
). One can easily

compute average intra-cluster and inter-cluster distances from theCF values. However,
in many applications, datasets2 are from non-vector metric space. Therefore, BIRCH
method cannot handle those applications.

Dash et al. in [10] proposed a fast hierarchical clustering method based on the par-
tially overlapping partitioning (POP). First, dataset is partitioned into a number of over-
lapping cells and cells are progressively merged into clusters until the distance between
any two closest cells is more than a pre-specified distance. Next, traditional hierarchi-
cal agglomerative clustering (centroid based) method is applied for obtaining the final
clusterings. It uses the vector space properties to calculate centroid of a cluster.

Nanni et al. in [11] exploited the triangle inequality property of the distance metric
to speed-up the hierarchical clustering methods (SL and CL).

Recently, Koga et al. [12] proposed a fast approximation algorithm for SL method.
Unlike classical SL method it quickly finds close clusters inlinear time using a proba-
bilistic approach (LSH [13].) Koga et al. showed that their method runs in linear time
under certain assumptions.

These methods successfully speedup the traditional clustering methods. However,
these methods are not suitable either for large datasets (entire dataset in main memory of
machine) or categorical datasets (non-vector space). The proposedl-AL method speeds
up the exiting AL clustering method but needs to store only the leaders in the main
memory of the machine (as AL is applied only on the leaders) and uses only the distance
information. So, for large datasetsl-AL method is more suitable instead of classical AL.

3 Background of the proposed method

As already discussed, the proposedl-AL builds on two clustering methodsviz., leaders
clustering and average-link clustering method; they are discussed in this section. These

2 datasets with categorical features



two clustering methods have their own advantages and disadvantages. The proposed
clustering methods exploit the advantages of these two clustering methods.

3.1 The leaders clustering method

The leaders clustering method [2] is a distance based partitional clustering method.
It is a single scan and an incremental clustering method. Recently, leaders clustering
method has been started using in preclustering phase of manydata mining applications
[14, 15]. For a given threshold distanceτ , it produces a set of leadersL incrementally
as follows. For each patternx, if there is a leaderl ∈ L such that||x − l|| <= τ , then
x is assigned to the cluster represented byl. In this case, we callx as afollower of the
leaderl. If there is no such leader, thenx becomes a new leader. The time complexity
of the leaders clustering isO(mn), wherem = |L|. The space complexity isO(m),
if only leaders are stored; otherwiseO(n). However, Viswanth et al. in [14] shown
that under certain assumptions about the datasets, there exists an upper-bound form,
which is independent ofn . Therefore, time complexity of the leaders clustering method
becomes linear. However, it can only find convex shaped clusters.

3.2 The average-link clustering method

The average-link [8, 16] is a distance based agglomerative hierarchical clustering method.
In average-link, distance between two clustersC1 andC2 is the average of distances be-
tween all pairs inC1 × C2. That is,

Distance(Ci, Cj) =
1

|Ci| ∗ |Cj |

∑

xi∈Ci

∑

xj∈Cj

||xi − xj ||

The average-link method with inter-cluster distance (h) is depicted in Algorithm 1.
The AL method is not sensitive to noisy patterns. The time andspace complexity of the
AL method areO(n2) [8, 16]. It scans the dataset many times. Therefore, AL method
is not suitable for the large dataset.

4 The proposed clustering method

To overcome the deficiencies of the AL method, we propose a clustering method termed
as l-AL, which is the combination of leaders and average-link. Further, technique to

Algorithm 1 AL(D,h)
Place each patternx ∈ D in a separate cluster. This is the initial clusteringπ1 =
{C1, C2, .. . . . , Cn} of D. Compute the inter-cluster distance matrix and seti = 1.

while There is a pair of clustersCx, Cy ∈ πi such thatDistance(Cx, Cy) ≤ h do
Select two closest clustersCl andCm and merge into a single new clusterC = Cl ∪ Cm.
Next clustering isπi+1 = πi ∪ {C} \ {Cl, Cm}; i = i + 1
Update the distances fromC to all other clusters in the current clusteringπi.

end while
Output all clusteringπ1, π2, . . . , πp.



reduce the number of distance computations while applying the leaders clustering to
the datasets is also proposed. In this section, we first discuss the technique to speed up
the leaders clustering followed by the proposedl-AL scheme.

4.1 Accelerating leader clustering method

We use triangle inequality property to reduce the number of distance computations of
the leaders clustering method. We term this approach asAccelerated leader. In recent
years, triangle inequality property of the metric space hasbeen used to reduce the dis-
tance computations in the clustering methods [11, 17, 18]. The triangle inequality prop-
erty can be stated as follows.

∀a, b, c ∈ D, d(a, b) ≤ d(b, c) + d(a, c) (1)

whereD is the set of data points,d is a distance function over the metric spaceM =
(D, d).

Let l1, l2 be the two leaders andx be an arbitrary pattern of the dataset. Form equa-
tion ( 1),

d(x, l2) ≥ |d(l1, l2) − d(x, l1)| (2)

From equation( 1) it may be noted that a lower bound on the distance between leader
l2 and patternx (termed asdlower(x, l2) ) can be obtained fromd(l1, x) andd(l1, l2)
without calculating the exact distance betweenl2 andx.

The Accelerated leader works as follows. The scheme requires a distance matrix
for leaders. This distance matrix can be generated hand-in-hand during the generation
of leaders (without any extra distance computation). Therefore, one can easily estimate
dlower(x, l2) only by computing distanced(l1, x).

Let τ be the leader’s threshold. LetL = {l1, l2, . . . , lk} be the set of leaders generated
at an instant and all be marked as “unprocessed” leaders. Thescheme starts with calcu-
lating the distance between a new patternx and leaderlf (wherelf is the first generated
leader among the set of “unprocessed” leaders). Ifd(x, lf ) ≤ τ , thenx becomes the
follower of leaderlf . If d(x, lf ) > τ , we can avoid the distance computations from all
leadersli ∈ L−{lf} where estimated lower bounddlower(x, li) > τ. Leadersli, lf are
marked as “processed” (pruned) leaders. If all leaders are pruned thenx becomes a new
leader and added toL. If all leaders are not marked as “processed”, we repeat same
procedure of calculating distance betweenx with next unprocessed leaderlu ∈ L if
d(x, lu) < d(x, lf ). If no (unprocessed)lu ∈ L is found such thatd(x, lu) > d(x, lf ),
then there cannot be a leaderlj such thatd(x, lj) ≤ τ ; sox becomes a new leader and
added toL. The whole procedure ofAccelerated leaders is depicted in Algorithm 2.

4.2 The leader-average-link(l-AL) method

In this sub-section, we discuss the proposedl-AL scheme. Thel-AL method works as
follows. First, a set of leaders (L) is obtained applying the Accelerated leaders clus-
tering method to the dataset (as discussed in previous subsection). Next, these leaders



Algorithm 2 Accelerated leader(D, τ )
1: L ← {l1}; { Let l1 ∈ D be the first scanned pattern}
2: for eachx ∈ D \ l1 do
3: S ← L; MIN =∞;
4: while (x does not become a follower andS is not empty)do
5: Pick a leaderli and delete fromS. { li is first generated leader inS.}
6: if d(x, li) ≤ τ then
7: x becomes a follower ofli; break;
8: else ifd(x, li) < MIN then
9: MIN = d(x, li);

10: for each leaderlk ∈ S(lk 6= li) do
11: if dlower(x, lk) > τ then
12: deletelk from setS.

13: end if
14: end for
15: end if
16: end while
17: if (x not be follower of any exsisting leaders inL) then
18: x becomes new leader and added toL.

19: end if
20: end for
21: OutputL⋆ = {(l, followers(l)) | l ∈ L}.

are clustered using classical AL method with minimum inter-cluster distanceh. Finally,
each leader is replaced by its followers set to produce the final sequence of clusterings.
Thel-AL method is depicted in Algorithm 3.

The time and space complexity of the proposed method are analyzed as follows.

1. The step of obtaining set of all leadersL takes time ofO(mn), wherem is the size
of the leader set. The space complexity isO(m). It scans the dataset once.

2. The time complexity of the AL(L, h) is O(m2). The space complexity isO(m2).

The overall running time ofl-AL is O(mn + m2) = O(mn). Experimentally, we also
show thatl-AL is considerably faster than that of the classical AL method, since AL
works with the whole dataset, whereas thel-AL works with set of leaders . The space
complexity of thel-AL method isO(m2).

Algorithm 3 l-AL(D, τ, h)
Apply Accelerated leader(D, τ ) as given in Algorithm 2. Let the set of leaders beL.
Apply AL(L, h) as given in Algorithm 1. Let output beπL

1 , πL
2 , . . . , πL

k { A sequence of
clusterings of leaderset}
Each leader in clusteringπL

i is replaced by its followers set. This gives a sequence of clus-
tering of the dataset (sayπD

1 , πD
2 , . . . , πD

k ).
OutputπD

1 , πD
2 , . . . , πD

k .



4.3 Relationship between AL andl-AL methods

As discussed in previous sub-sectionl-AL clusters dataset at a computational cost sig-
nificantly lower than classical AL. It may be noted thatl-AL may overestimate or un-
derestimate the distance between a pair of clusters with compared to the classical AL
method (termed as distance error). This may lead to deviation in clustering results ob-
tained byl-AL compared to AL. In this subsection a theoretical upper bound of the
distance error is established.

Let l1, l2 ∈ L be two leaders obtained using the thresholdτ . Let F (l1) ⊆ D be the
set of followers of leaderl1 includingl1. Similarly,F (l2) is the set of followers ofl2.

Lemma 1. If the leaders threshold is τ , then l-AL may introduce an error of average
value Er(l1, l2) < 2τ , while measuring the distance between a pair of leaders (l1, l2).

Proof: Let ||l1 − l2|| = T > 2τ. We have three cases.

1. We assume that all followers ofl1 are more thanT distance away from the fol-
lowers ofl2, except the leaders themselves. (This case is illustrated in Fig. 1(a)).
Formally,||xi − xj || > T wherexi ∈ F (l1) \ {l1} andxj ∈ F (l2) \ {l2}. There-
fore, distance between a pair of followers(xi, xj) can be at mostT + 2τ. So, for
all followers (of this case)l-AL underestimates the distance and approximates toT

(as||l1 − l2|| = T ). Therefore, error incurred by a pair of such followers is atmost
2τ. The average errorEr(l1, l2) introduced by thel-AL method for a pair of leader
can be computed as follows.

Er(l1, l2) =
(m1 − 1)(m2 − 1)2τ + (m1 − 1)τ + (m2 − 1)τ

m1m2

<
m1m2 ∗ 2τ

m1m2
= 2τ

(3)

wherem1 = |F (l1)| andm2 = |F (l2)|.
The first term of the numerator of equation ( 3) appears due to errors introduced by
the followers ofl1 (m1 − 1 in number) andl2 (m2 − 1 in number). Second (third)
term captures errors introduced byl2(l1) and followers ofl1(l2).

2. We assume that||xi −xj || < T such thatxi ∈ F (l1)\ {l1} andxj ∈ F (l2)\ {l2} ,
distance betweenxi, xj cannot be less thanT − 2τ. Similar to case 1 we obtain the
average errorEr(l1, l2) < 2τ. (Fig. 1(b)). Here,l-AL overestimates the distance.

(b)(a)

l1

τ
τ

τ

l2 l1 l2

||.|| < T||.|| > T

T T

T = ||l1 − l2||

∈ Fin(l2)

∈ Fre
v
(l1)

Fig. 1. (a) l-AL underestimates the distance(b) l-AL overestimates the distance



3. If distance between any pair of followers is||xi − xj || = (T − 2τ, T + 2τ), the
average error is less than2τ.

From all three cases, we obtain that average errorEr(l1, l2) is less than2τ �

The distance error computation between two leaders can easily be extended for a
pair of clusters, as follows.

Theorem 1. If the leaders threshold is τ , then l-AL may introduce an average error
Er(C1, C2) < 2τ in measuring the distance between a pair of clusters (C1, C2) .

Proof: From Lemma 1, we know that average error between a pair of leadersEr(l1, l2) <

2τ. Let the upper bound on the average errorEr(l1, l2) be2τ − ǫ, where0 < ǫ << τ .
Then the average error between a pair of clusters(C1, C2) is as follows.

Er(C1, C2) =
(2τ − ǫ) ∗ ml

1m
l
2

ml
1m

l
2

= 2τ − ǫ < 2τ,

whereml
1 andml

2 are the numbers of leaders of the clustersC1 andC2, respectively.�

For large datasets, numbers of leaders are considerably less compared to the size of
the data. The numbers of followers per leader are considerably large. As a result, there
is high probability that followers of leader are distributed evenly. This leads to error
in distance computation between leaders byl-AL method is marginal, which is also
reflected in our experimental results. So, Corollary 1 can bededuced.

Corollary 1 If the followers of leaders are distributed uniformly, the average distance
error for those leaders is 0. �

Table 1. Datasets Used

Dataset # Pattern# Features
Circle (Synthetic) 28000 2

Gaussian(Synthetic) 4078 2
Pendigits 7494 16

Letter 20000 16
Shuttle 58000 9

Table 2. Performance of Accelerated leaders for Circle
dataset

Threshold Method # Computations
(τ ) (in Million)
0.1 Leaders 90.13

Accelerated leader 28.66
0.2 Leaders 20.03

Accelerated leader 2.37
0.3 Leaders 11.33

Accelerated leader 0.96
0.4 Leaders 5.97

Accelerated leader 0.49
0.5 Leaders 3.85

Accelerated leader 0.35
0.6 Leaders 2.81

Accelerated leader 0.30



5 Experimental Results

In this section, we discuss the experimental evaluation of our proposed clustering method.
We evaluated thel-AL method andAccelerated leader separately. We conducted the ex-
periments with synthetic and real world datasets (Table 1) (http://archive.ics.uci.edu/ml)
after removing the class labels.

We implemented leaders clustering andAccelerated leader using C language and
executed on Intel Core2 Duo with2GB RAM IBM PC. These two methods are tested
with Circle and Shuttle datasets. The detailed results are shown in Table 2 and Fig 2.
For the Circle dataset, with leader’s thresholdτ = 0.1, our proposedAccelerated leader
computes60 millions less distance calculations to achieve same results as that of the
classical leaders method (Table 2). For the other values ofτ , proposedAccelerated
leader performs significantly less computations compared to that of classical leaders
method (Table 2).

To show the performance of the proposed leaders clustering speeding-up technique
with variable dataset size, experiments are conducted on Shuttle dataset with leaders
thresholdτ = 0.001. This is reported in Fig 2. It may be noted that with the increase
of the data size, number of distance calculations inAccelerated leader reduces signifi-
cantly compared to classical leaders.

Performance ofl-AL method To show the performance of thel-AL method, we imple-
mented AL andl-AL methods using C language and executed on Intel Xeon Processor
(3.6GHz) with 8GB RAM IBM Workstation. We computed the Rand Index (RI)( [19])
between the final clustering results of thel-AL and the AL method. We conducted ex-
periments with synthetic (Gaussian) (Fig. 3) as well as realworld large datasets. The
detailed results are provided in Table 3, Table 4 and Table 5.

The Gaussian is a2 dimensional data with four clusters. Three clusters are drawn
from the normal distribution with means ((0 0)T , (0 8)T , (7 7)T ) and covarience matrix

I2 =

(

1 0
0 1

)

. Each of these three clusters has1000 patterns. Fourth cluster is drawn
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Table 3. Results for Gaussian Dataset

ThresholdCut-off Method Time Rand Index
(τ ) (h) (Sec.) (RI)

0.25 4.0 l-AL 0.04 0.999
4.0 AL 14.96 –
4.5 l-AL 0.04 0.999
4.5 AL 14.96 —-
5.0 l-AL 0.04 1.000
5.0 AL 14.96 —

0.50 6.5 l-AL 0.01 0.870
6.5 AL 14.96 —
7.0 l-AL 0.01 1.000
7.0 AL 14.96 —
8.0 l-AL 0.01 1.000
8.0 AL 14.96 —

from a uniform random distribution (Fig. 3). For this dataset, leaders thresholdsτ were
chosen as0.25, 0.50. The clustering results of the proposedl-AL method are same as
the classical AL method with cut-off distances (h) 5.0, 7.0, 8.0 and results are very close
to AL method for the cut-off distances(h) 4.0, 4.5, 6.5 (Table 3). The execution time
of the proposed method is less than0.3% of that of the AL method.

To show the effectiveness of the proposed method in the real world large datasets,
we experimented with Pendigits, Letter and Shuttle datasets (Table 1). For Pendigits
dataset, clustering results ofl-AL method is very close (RI = 0.899, 0.897, 0.911,

0.904, 0.935, 0.933, 0.913, 0.909) to that of the classical AL method with different
τ (30, 40) and differenth (145, 150, 155, 160) (Table 4). Thel-AL consumes less than
0.5% of CPU time of that of the AL method.

For Letter dataset, withτ = 4 and different cut-off distances (h = 10, 12, 15) l-
AL method produces clustering results (RI = 0.811, 0.835, 0.977) close to that of the

Table 4. Results for Standard
Datasets

Dataset ThresholdCut-off Method Time Rand Index
(τ ) (h) (Sec.) (RI)

Pendigits 30 145 l-AL 1.13 0.899
145 AL 201.55 –
150 l-AL 1.13 0.897
150 AL 201.55 —-
155 l-AL 1.13 0.911
155 AL 201.55 —
160 l-AL 1.13 0.904
160 AL 201.55 —

40 145 l-AL 0.31 0.935
145 AL 201.55 —
150 l-AL 0.31 0.933
150 AL 201.55 —
155 l-AL 0.31 0.913
155 AL 201.55 —
160 l-AL 0.31 0.909
160 AL 201.55 —

Table 5. Results for Large Real Datasets

DatasetThresholdCut-off Method Time Rand Index
(τ ) (h) (Sec.) (RI)

Letter 4 10 l-AL 3.28 0.811
10 AL 1464.10 —
12 l-AL 3.28 0.835
12 AL 1464.10 —
15 l-AL 3.28 0.977
15 AL 1464.10 —

Shuttle 0.001 0.8 l-AL 55.55 0.999
0.8 AL 7140.54 —
0.9 l-AL 55.55 0.999
0.9 AL 7140.54 —
1.0 l-AL 55.55 0.999
1.0 AL 7140.54 —
1.2 l-AL 55.55 1.000
1.2 AL 7140.54 —



classical AL method (Table 5). However,l-AL is more than400 times faster than that
of the classical AL method.

For Shuttle dataset, we executed AL andl-AL methods and results are reported in
Table 5. It is noted that clustering results(RI = 0.999, 1.000) are at par or same with
the AL method atτ = 0.001 andh = 0.8, 0.9, 1.0, 1.2.

6 Conclusions

In this paper, we proposed a clustering methodl-AL for the large dataset in any metric
space. In this method, we first apply leaders clustering to derive a set of prototypes of
the dataset and subsequently the classical AL method is applied to the prototypes. The
technique to reduce the number of distance computations in the leaders method is also
proposed. The clustering results produced by thel-AL method are at par with that of the
AL method. Thel-AL method takes significantly less time compared to that of the AL
method. Like AL,l-AL is immune to clustering of data with noise. Asl-AL is faster,
it can be used in application like network intrusion detection system where data size is
very large and spurious patterns are very less.
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