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Abstract. Average-link (AL) is a distance based hierarchical clustemethod,
which is not sensitive to the noisy patterns. However, likbiararchical cluster-
ing methods AL also needs to scan the dataset many times. $Mirha and space
complexity of O(n?), wheren is the size of the dataset. These prohibit the use
of AL for large datasets. In this paper, we have proposedtartie based hierar-
chical clustering method terméeAL which speeds up the classical AL method
in any metric (vector or non-vector) space. In this schemst,l&aders clustering
method is applied to the dataset to derive a set of leadersrgkquently AL
clustering is applied to the leaders. To speed-up the lsadlestering method,
reduction in distance computations is also proposed ingéjger. Experimental
results confirm that theAL method is considerably faster than the classical AL
method yet keeping clustering results at par with the atasgiL method.
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1 Introduction

Clustering technique is required in numerous fields of ezgjiimg namely Data Mining,
Pattern Recognition, Statistical Data Analysis, Bio-infiatics, etc. [1-3]. Given a set
of data points (called patters), clustering involves gingphese patterns into different
disjoint subsets termed as clusters based on some simitagi@sures. In other words,
patterns in a cluster are more similar to each other thaenatin other clusters.

The clustering methods are mainly divided into two categgiz., partitional clus-
tering and hierarchical clustering, based on the way thesglyce the results. Partitional
clustering methods create a single clustering (flat clusi¢of the dataset. Partitional
clustering can be classified into two classes based on ttexiarusedviz., distance
based and density based. Distance based methods optimiabad griteria based on
the distance between the patteriigneans, CLARA, CLARANS are examples of dis-
tance based clustering method. Density based methodsipgtiotal criteria based
on density information of the patterns. DBSCAN [4], DenCare some well known
density based clustering methods.

Hierarchical clustering methods create a sequence ofahelsisterings of the dataset.
Like partitional clustering, hierarchical clustering rnetls can also be classified in two
classesviz,, density based (e.g., OPTICS [5], Chameleon) and distansedbge.g.,
single-link (SL) [6], complete-link (CL) [7], average-k(AL) [8]).



The above three distance based hierarchical clusteringadehamely SL, CL and
AL differ in the “distance measure” between a pair of clustén SL (CL), distance
between a pair of clustefs; andC’, (say), is the distance between two closest (farthest)
patterns one front; and the other fronCs. In other words, only a pair of patterns
decides the distance and it is independent of number ofrpatpgesent in the clusters.
Therefore, SL and CL clustering methods are sensitive tlieosior noisy patterns. To
minimize the effect of noisy patterns, inter-cluster distain AL technique is computed
using all patterns present in both clusters. Distance lEt@/e andCs in AL method is
the average of distances between all pairs of patterns aeea fromC; and the other
from C5. It builds a dendogram where each level represents a dlugtef the dataset.
A suitable clustering is chosen from the dendogram basekeretjuirement. Selection
of a clustering from the dendogram can be done by specifyirthe minimum distance
between any pair of cluste(s) number of desired clusters.

For some applications like network intrusion detectiontays(NIDS) proportion
of the data points is unequal (i.e., number of the data pahtbnormal/attack type
is very less compared to normal data points). These low ptiopal data points (ab-
normal/attack data points) look like outliers in the featapace. These abnormal data
points are likely to get merged with the clusters of normahdaoints in SL and CL
methods as they are sensitive to the noisy (outlier) poliwsvever, AL method works
well even in the presence of noisy (outlier) data points.Aoclustering method is
more suitable for these type of applications.

AL needs to scan the dataset many times and has time and spagdegity of
O(n?). These prohibit the use of AL for large datasets. In this pawe have pro-
posed a distance based hierarchical clustering metho@t#fAL which speeds up the
classical AL method-AL method is suitable for any metric space.

In the proposed scheme, we have used leaders clusteringarnetiderive a set of
leaders of the dataset. Later, AL is used to cluster the tsad@e final clusterings are
obtained by just replacing the leaders by their correspuapftillowers.-AL has lower
time complexity because AL is used only on the leaders whiehnauch smaller in
number compared to the dataset. It may be noted that leadera®n involves single
scan of the dataset. Expansion of the clusters involves staoncomplexity. Further,
technique has been proposed to reduce the number of distamgautations in leaders
clustering method.

The contributions of this paper are:

— Technique has been proposed to reduce the number of distalmédations re-
quired in leaders clustering. Triangle inequality prop@ft metric space has been
used for this reduction.

— A distance based hierarchical clustering method tertw&d is proposed which
speeds up the classical AL method and scans the datasetl-@gicases the accel-
erated leader clustering technique to generate the leaders

— |-AL does not use any vector space propertids utilizes only the distance infor-
mation between the data points. TherefdrAL method is suitable for vector as
well as non-vector metric space.

! vector addition and scalar multiplication



— Experimental results illustrateAL method to be faster than classical AL method
yet maintaining clustering results at par with classical fat various cut-off dis-
tances.

The rest of the paper is organized as follows. Section 2 desca summary of related
works. Section 3 describes the brief background of the megolustering method. Sec-
tion 4 describes the proposed leader-averageJidlj method and also a relationship
between the AL method and thé\L method is formally reported. Experimental results
and conclusion are discussed in Section 5 and Section @&atsgy.

2 Related work

In this section, a brief review of related works is reporteddistance based hierarchical
clustering methods.

T. Zhang et al. in [9] introduced a clustering method calldiR@H for large
datasets. The core concept of BIRCHGHustering Feature (CF). The CF utilizes
the vector space (Euclidean space) properties to storeuthenary ofk data points

{Z}izlnk. The CF is defined asCF = (k,>F | X, PO )7;2). One can easily
compute average intra-cluster and inter-cluster dissifioen theC' F' values. However,
in many applications, datasetsre from non-vector metric space. Therefore, BIRCH
method cannot handle those applications.

Dash et al. in [10] proposed a fast hierarchical clusterieghmd based on the par-
tially overlapping partitioning (POP). First, dataset #&ftioned into a number of over-
lapping cells and cells are progressively merged into efssintil the distance between
any two closest cells is more than a pre-specified distanegt, faditional hierarchi-
cal agglomerative clustering (centroid based) method jiiegh for obtaining the final
clusterings. It uses the vector space properties to caécaéntroid of a cluster.

Nanni et al. in [11] exploited the triangle inequality profyeof the distance metric
to speed-up the hierarchical clustering methods (SL and CL)

Recently, Koga et al. [12] proposed a fast approximationritigm for SL method.
Unlike classical SL method it quickly finds close clusterdifear time using a proba-
bilistic approachl(SH [13].) Koga et al. showed that their method runs in linearetim
under certain assumptions.

These methods successfully speedup the traditional dliugtsethods. However,
these methods are not suitable either for large dataseise(dataset in main memory of
machine) or categorical datasets (non-vector space). poped-AL method speeds
up the exiting AL clustering method but needs to store ondy ldaders in the main
memory of the machine (as AL is applied only on the leaderd)ees only the distance
information. So, for large datasét&\L method is more suitable instead of classical AL.

3 Background of the proposed method

As already discussed, the propo$el builds on two clustering methodéz., leaders
clustering and average-link clustering method; they aseusised in this section. These

2 datasets with categorical features



two clustering methods have their own advantages and disaayes. The proposed
clustering methods exploit the advantages of these twdering methods.

3.1 The leaders clustering method

The leaders clustering method [2] is a distance based ipadltclustering method.
It is a single scan and an incremental clustering methodefBg leaders clustering
method has been started using in preclustering phase of daaymining applications
[14,15]. For a given threshold distanegit produces a set of leadefsincrementally
as follows. For each pattenn if there is a leadet € £ such that|x — I|| <= 7, then
x is assigned to the cluster represented.by this case, we call as afollower of the
leaderi. If there is no such leader, thenbecomes a new leader. The time complexity
of the leaders clustering i©(mn), wherem = |£|. The space complexity i®(m),

if only leaders are stored; otherwig&n). However, Viswanth et al. in [14] shown
that under certain assumptions about the datasets, thists ar upper-bound forn,
which is independent of . Therefore, time complexity of the leaders clustering radth
becomes linear. However, it can only find convex shapedaisist

3.2 The average-link clustering method

The average-link [8, 16] is a distance based agglomeraitvatthical clustering method.
In average-link, distance between two clust&rsandC;, is the average of distances be-
tween all pairs irC, x Cs. That s,

) 1
Distance(C;, Cy) = GGl E E ||z; — ;]|
i J

z,€C; IJ’ECJ'

The average-link method with inter-cluster distankei¢ depicted in Algorithm 1.
The AL method is not sensitive to noisy patterns. The timespate complexity of the
AL method areD(n?) [8,16]. It scans the dataset many times. Therefore, AL ntetho
is not suitable for the large dataset.

4  The proposed clustering method

To overcome the deficiencies of the AL method, we proposestatling method termed
asl-AL, which is the combination of leaders and average-linkitRer, technique to

Algorithm 1 AL(D,h)

Place each pattern € D in a separate cluster. This is the initial clustering =

{C1,Cq,.....,Cy} of D. Compute the inter-cluster distance matrix and;set1.

while There is a pair of clusters,, Cy, € m; such thaDistance(C,,Cy) < h do
Select two closest cluste€ andC',, and merge into a single new cluster= C; U Cy,.
Next clustering isri41 = m U{C} \{C},Cn}; 1=1i+1
Update the distances fro@i to all other clusters in the current clustering

end while

Output all clusteringry, 72, . .., 7p.




reduce the number of distance computations while applyiegeaders clustering to
the datasets is also proposed. In this section, we first sksitie technique to speed up
the leaders clustering followed by the propos#d. scheme.

4.1 Accelerating leader clustering method

We use triangle inequality property to reduce the numbeiisibdce computations of
the leaders clustering method. We term this approacdkcederated leader. In recent
years, triangle inequality property of the metric spacelieen used to reduce the dis-
tance computations in the clustering methods [11, 17, 183.tliangle inequality prop-
erty can be stated as follows.

Va,b,c € D,d(a,b) < d(b,c)+ d(a,c) 1)

whereD is the set of data pointg, is a distance function over the metric spade=
(D, d).

Letly, [> be the two leaders andbe an arbitrary pattern of the dataset. Form equa-
tion (1),

d(z,ly) > |d(l1,12) — d(z,1y)] (2)

From equation( 1) it may be noted that a lower bound on thewlcst between leader
I, and pattern: (termed asi'***" (z,15) ) can be obtained fromi(l,, z) andd(l1, )
without calculating the exact distance betwégand:x.

The Accelerated leader works as follows. The scheme requires a distance matrix
for leaders. This distance matrix can be generated hamddia-during the generation
of leaders (without any extra distance computation). Tloeeg one can easily estimate
d'ever (1) only by computing distancé(l,, ).

Let 7 be the leader’s threshold. Lét= {l1, s, ..., } be the set of leaders generated
at an instant and all be marked as “unprocessed” leaderschagne starts with calcu-
lating the distance between a new patteand leadet; (wherel is the first generated
leader among the set of “unprocessed” leadersj(dfl;) < 7, thenz becomes the
follower of leaderiy. If d(z, 1) > 7, we can avoid the distance computations from all
leaderd; € L — {l;} where estimated lower bouaé?*" (z,1;) > 7. Leaderd,, s are
marked as “processed” (pruned) leaders. If all leadersramegg then: becomes a new
leader and added t8. If all leaders are not marked as “processed”, we repeat same
procedure of calculating distance betweewith next unprocessed leadgr € L if
d(z,l,) < d(z,ly). If no (unprocessed), € L is found such thad(z,{,,) > d(z,ls),
then there cannot be a leadgisuch thatd(z, [;) < 7; sox becomes a new leader and
added tol. The whole procedure diccelerated leadersis depicted in Algorithm 2.

4.2 The leader-average-link-AL) method

In this sub-section, we discuss the propokéd. scheme. The-AL method works as
follows. First, a set of leader<L] is obtained applying the Accelerated leaders clus-
tering method to the dataset (as discussed in previous ctidoge Next, these leaders



Algorithm 2 Accelerated leadef, 7 )

1: £ — {li}; { Letl, € D be the first scanned pattdrn

2: for eachz € D\ /; do

S— L; MIN = oc;

4:  while (z does not become a follower aritis not empty)do

5 Pick a leadet; and delete fron®t. { [; is first generated leader i1}
6: if d(z,1;) < 7then
7

8

x becomes a follower df;; break;
: else ifd(x,l;) < MIN then
9: MIN = d(z,1;);

10: for each leadel, € S(I, # ;) do
11: if d'°°"(x, 1)) > T then

12: deletd;, from setS.

13: end if

14: end for

15: end if

16: end while
17: if (z not be follower of any exsisting leaders4h) then

18: x becomes new leader and added’to
19: endif
20: end for

21: Outputl* = {(I,followers(l)) | L € L}.

are clustered using classical AL method with minimum irgieister distancé. Finally,
each leader is replaced by its followers set to produce tla¢$equence of clusterings.
Thel-AL method is depicted in Algorithm 3.

The time and space complexity of the proposed method argzethhs follows.

1. The step of obtaining set of all leadet$akes time ofD(mn), wherem is the size
of the leader set. The space complexitgign). It scans the dataset once.

2. The time complexity of the ALL, h) is O(m?). The space complexity i9(m?).

The overall running time ofAL is O(mn + m?) = O(mn). Experimentally, we also
show thatl-AL is considerably faster than that of the classical AL noethsince AL
works with the whole dataset, whereas th&l works with set of leaders . The space
complexity of thd-AL method isO(m?).

Algorithm 3 I-AL(D, T, h)
Apply Accelerated leadeH, 7 ) as given in Algorithm 2. Let the set of leaders be
Apply AL(L, h) as given in Algorithm 1. Let output bef, 75, ..., 7+ { A sequence of
clusterings of leaderskt
Each leader in clustering® is replaced by its followers set. This gives a sequence & clu
tering of the dataset (say”, 7%, ..., 7F).

Ooutputr?, =2, ... 7P.




4.3 Relationship between AL and-AL methods

As discussed in previous sub-sectleAL clusters dataset at a computational cost sig-
nificantly lower than classical AL. It may be noted thaiL may overestimate or un-
derestimate the distance between a pair of clusters wittpaoad to the classical AL
method (termed as distance error). This may lead to dewiaticlustering results ob-
tained byl-AL compared to AL. In this subsection a theoretical uppeurmb of the
distance error is established.

Letly,ly € L be two leaders obtained using the thresholtet F'(I;) C D be the
set of followers of leadef; includingl;. Similarly, F'(I2) is the set of followers of.

Lemma 1. If the leaders threshold is 7, then I-AL may introduce an error of average
value Er(l1,12) < 27, while measuring the distance between a pair of leaders (i1, l2).

Proof: Let ||l — Is|| = T > 27. We have three cases.

1. We assume that all followers of are more thari” distance away from the fol-
lowers ofl,, except the leaders themselves. (This case is illustrat&ii 1(a)).
Formally,||z; — z;|| > T wherex; € F(l;) \ {l:} andz; € F(l2) \ {l2}. There-
fore, distance between a pair of followers;, x;) can be at mosI’ + 27. So, for
all followers (of this casel}AL underestimates the distance and approximatés to
(as||ls — l2|| = T). Therefore, error incurred by a pair of such followers ignaist
27. The average errabr(ly, l2) introduced by thé-AL method for a pair of leader
can be computed as follows.

(my —1)(ma — 1)27 4+ (my — 1)7 + (M2 — 1)7
mimso

ET’(ll 5 ZQ) =

mims *x 27 (3)
— =27
m1my
wherem; = |F(l1)| andms = |F(l2)|.
The first term of the numerator of equation ( 3) appears dugtointroduced by
the followers ofl; (m; — 1 in number) ands (m2 — 1 in number). Second (third)
term captures errors introduced by, ) and followers of/; ().
2. We assume thdltz; — z;|| < T such thate; € F'(11)\ {l1} andz; € F(l2)\ {l2},
distance between;, z; cannot be less thahi — 27. Similar to case 1 we obtain the
average errofr(ly, 1) < 27. (Fig. 1(b)). Here,I-AL overestimates the distance.

T = [l = bl|

\\\l\\

Fig. 1. (a) I-AL underestimates the distan¢®) I-AL overestimates the distance



3. If distance between any pair of followers|js; — z;|| = (T' — 27, T + 27), the
average error is less tham.

From all three cases, we obtain that average divdi,, l2) is less thar2r O
The distance error computation between two leaders caly émsextended for a
pair of clusters, as follows.

Theorem 1. If the leaders threshold is 7, then |-AL may introduce an average error
Er(Cy,Cs) < 27 in measuring the distance between a pair of clusters (C1, C-) .

Proof: From Lemma 1, we know that average error between a pair oéteatt((,,l2) <
27. Let the upper bound on the average eitofl;, l2) be2r — ¢, whered < e << 7.

Then the average error between a pair of clust€is C-) is as follows.

(27 — €) x mim),

[
mymy

Er(Cy,C3) = =27 — € < 27,

wherem} andml, are the numbers of leaders of the clustérsandC,, respectivelyl]

For large datasets, numbers of leaders are considerallycdespared to the size of
the data. The numbers of followers per leader are consitjealye. As a result, there
is high probability that followers of leader are distribditevenly. This leads to error
in distance computation between leadersl4§L method is marginal, which is also
reflected in our experimental results. So, Corollary 1 caddzhuced.

Corollary 1 If the followers of leaders are distributed uniformly, the average distance
error for those leadersis 0. O

Table 2. Performance of Accelerated leaders for Circle

dataset
Thresholg Method # Computations
(1) (in Million)
0.1 Leaders 90.13
Table 1. Datasets Used Accelerated leadef 28.66
0.2 Leaders 20.03
Dataset # Pattern# Features Accelerated leadef 237
Circle (Synthetic)| 28000 2 03 Leaders 11.33
Gaussian(Synthetic) 4078 2 Accelerated leadef 0.96
Pendigits 7494 16 04 Leaders 597
Letter 20000 16 Accelerated leadef 0.49
Shuttle 58000 9 0.5 Leaders 3.85
Accelerated leadef 0.35
0.6 Leaders 2.81
Accelerated leadef 0.30




5 Experimental Results

In this section, we discuss the experimental evaluatiomppooposed clustering method.
We evaluated theAL method andAccelerated leader separately. We conducted the ex-
periments with synthetic and real world datasets (Tablbtip:{/archive.ics.uci.edu/ml)
after removing the class labels.

We implemented leaders clustering afxctelerated leader using C language and
executed on Intel Corg Duo with2G' B RAM IBM PC. These two methods are tested
with Circle and Shuttle datasets. The detailed results lzoesis in Table 2 and Fig 2.
For the Circle dataset, with leader’s threshole: 0.1, our proposedccel erated |eader
computess0 millions less distance calculations to achieve same 1esuslithat of the
classical leaders method (Table 2). For the other values giroposedAccelerated
leader performs significantly less computations compared to thatassical leaders
method (Table 2).

To show the performance of the proposed leaders clustepmgdéng-up technique
with variable dataset size, experiments are conducted ottlSllataset with leaders
thresholdr = 0.001. This is reported in Fig 2. It may be noted that with the inseea
of the data size, number of distance calculation&doelerated leader reduces signifi-
cantly compared to classical leaders.

Performance ofl-AL method To show the performance of theé\L method, we imple-
mented AL and-AL methods using C language and executed on Intel Xeon Bsoce
(3.6G H =) with 8GB RAM IBM Workstation. We computed the Rand Indexi()( [19])
between the final clustering results of thAL and the AL method. We conducted ex-
periments with synthetic (Gaussian) (Fig. 3) as well as waald large datasets. The
detailed results are provided in Table 3, Table 4 and Table 5.

The Gaussian is & dimensional data with four clusters. Three clusters arevdra
from the normal distribution with meang&X0)7, (0 8)', (7 7)T) and covarience matrix

I, = (é (1)) . Each of these three clusters Ha®)0 patterns. Fourth cluster is drawn

Accelerated leader
Classical leaders ----+---

# Computations in millions
» 2 @ 5 K &
& 8 8 8 B8 &

“,

N
o

o L L L L L
5K 15K 25K 35K 50K 58K
Dataset size(D)

Fig.2. Number of distance computations Vs Fig. 3. Gaussian (Synthetic) Dataset.
dataset size for Shuttle data £ 0.001)



Table 3. Results for Gaussian Dataset

ThresholdCut-offf Method Time|Rand Inde
(m) (h) (Sec.) (RI)
0.25 4.0 | I-AL | 0.04 0.999
4.0 AL |[14.96 -
45 | I-AL | 0.04 0.999
4.5 AL |14.96 —
5.0 | I-AL | 0.04 1.000
5.0 AL |[14.96 —
0.50 6.5 | I-AL | 0.0 0.870
6.5 AL |[14.96 —
7.0 | I-AL | 0.01f 1.000
7.0 AL |14.96 —
8.0 | I-AL | 0.01] 1.000
8.0 AL |[14.96 —

from a uniform random distribution (Fig. 3). For this dataseaders thresholdswere
chosen a$.25,0.50. The clustering results of the proposedL method are same as
the classical AL method with cut-off distancés 6.0, 7.0, 8.0 and results are very close
to AL method for the cut-off distancg#) 4.0, 4.5, 6.5 (Table 3). The execution time
of the proposed method is less tHaR% of that of the AL method.

To show the effectiveness of the proposed method in the redtilarge datasets,
we experimented with Pendigits, Letter and Shuttle dasa@etble 1). For Pendigits
dataset, clustering results bAL method is very close RI = 0.899,0.897,0.911,
0.904,0.935,0.933,0.913,0.909) to that of the classical AL method with different
7 (30,40) and differenth (145, 150, 155, 160) (Table 4). Thd-AL consumes less than
0.5% of CPU time of that of the AL method.

For Letter dataset, with = 4 and different cut-off distances. (= 10,12, 15) I-
AL method produces clustering resuli3{ = 0.811,0.835,0.977) close to that of the

Table 4. Results for Standard Table 5. Results for Large Real Datasets

Datasets
i DatasefThresholdCut-offMethod Time|Rand Inde
Dataset| ThresholdCut-off Method Time|Rand Inde: () (h) (Sec.] (RI)
G (h) (Sec] (RI) Letter| 4 10 | AL 3.28 0811
Pendigity 30 145 | I-AL 1.13] 0.899 10 AL |1464.10 _
145 AL ]201.5§ - 12 [-AL 3.28 0.835
150 | T-AL 1.13 0.897 12 AL |1464.10 _
150 | AL ]201.5§ — 15 | -AL 3.28 0.977
155 | -AL 1.13 0.911 15 AL |1464.1( —
155 | AL 120154 — Shuttle] 0.001 | 0.8 | IFAL | 55.58 0.999
160 | I-AL 1.13 0.904 08 | AL 714054 —
160 AL |201.5§ — 0.9 | I-AL 55.55 0.999
70 145 | I-AL | 0.31 0.935 09 | AL |714054 —
145 AL ]201.5§ — 1.0 | I-AL 55.5 0.999
150 | T-AL 0.31] 0.933 1.0 AL |7140.54 —
150 AL |201.5§ — 1.2 | I-AL 55.55 1.000
155 | T-AL 0.31] 0.913 1.2 AL |7140.54 =
155 | AL |2015 — : '
160 | T-AL 0.31] 0.909
160 AL [201.55 —




classical AL method (Table 5). HowevéyAL is more thard00 times faster than that
of the classical AL method.

For Shuttle dataset, we executed AL drilL methods and results are reported in
Table 5. It is noted that clustering resu(i8/ = 0.999, 1.000) are at par or same with
the AL method at- = 0.001 andh = 0.8,0.9,1.0,1.2.

6 Conclusions

In this paper, we proposed a clustering methdd. for the large dataset in any metric
space. In this method, we first apply leaders clustering tivel@ set of prototypes of
the dataset and subsequently the classical AL method igeggplthe prototypes. The
technique to reduce the number of distance computatioreiteders method is also
proposed. The clustering results produced byltAk method are at par with that of the
AL method. Thd-AL method takes significantly less time compared to thahefAL
method. Like AL,I-AL is immune to clustering of data with noise. A\L is faster,

it can be used in application like network intrusion detattsystem where data size is
very large and spurious patterns are very less.
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